Hands-On Tutorial

Building Your First AI Agent

Free Tools, Open Source, Zero to Deployment

Build Your First Agent tutorial guide showing AI agent architecture and workflow
Intelligent Solutions Agency
December 2024
25 min tutorial

What We're Building

A fully functional customer support AI agent that can answer questions, search documentation, escalate to humans, and learn from interactions—all using free and open-source tools.

$0

Initial cost

2-3 hrs

Build time

5

Core features

100%

Open source

Building an AI agent used to require a PhD and a massive budget. Today, thanks to open-source tools and accessible APIs, anyone with basic programming knowledge can create sophisticated AI agents in a weekend. This tutorial will take you from zero to a deployed AI agent, using only free tools and services.

We'll build a real, production-ready agent—not a toy example. By the end, you'll have a customer support agent that can handle 80% of common queries, integrate with your existing tools, and continuously improve its responses. More importantly, you'll understand the architecture well enough to adapt it for any use case.

Prerequisites: Basic Python knowledge, a code editor (VS Code recommended), and a GitHub account. We'll guide you through everything else.

Part 1: Understanding AI Agents

What Makes an AI Agent?

Traditional Chatbot

  • • Follows scripted responses
  • • Can't handle unexpected queries
  • • No memory between sessions
  • • Limited to predefined flows

AI Agent

  • • Understands context and intent
  • • Handles novel situations
  • • Maintains conversation memory
  • • Can use tools and APIs

Core Components of Our Agent

  1. 1. Language Model: The "brain" that understands and generates text
  2. 2. Memory System: Stores conversation history and learned information
  3. 3. Tool Integration: Ability to search docs, call APIs, trigger actions
  4. 4. Decision Engine: Determines when to use which capability
  5. 5. Safety Layer: Prevents harmful or inappropriate responses

Part 2: Setting Up Your Development Environment

1

Install Python and Dependencies

# Check if Python is installed (need 3.8+)
python --version

# Create virtual environment
python -m venv ai_agent_env

# Activate environment
# On Windows:
ai_agent_env\Scripts\activate
# On Mac/Linux:
source ai_agent_env/bin/activate

# Install required packages
pip install langchain openai chromadb tiktoken faiss-cpu streamlit python-dotenv

Package Breakdown: LangChain (agent framework), OpenAI (LLM access), ChromaDB (vector database), Streamlit (web interface), python-dotenv (environment variables)

2

Get Free API Keys

Option A: OpenAI (Recommended)

  1. 1. Go to platform.openai.com
  2. 2. Sign up for free account
  3. 3. Get $5 free credits
  4. 4. Create API key in settings

Cost: ~$0.002 per query with GPT-3.5

Option B: Local LLM (Free)

  1. 1. Install Ollama
  2. 2. Run: ollama pull llama2
  3. 3. No API key needed
  4. 4. Runs 100% locally

Requirements: 8GB+ RAM, slower responses

# Create .env file for API keys
echo "OPENAI_API_KEY=your-api-key-here" > .env

# For local Ollama (no key needed)
echo "USE_OLLAMA=true" >> .env
3

Create Project Structure

mkdir ai_agent_project
cd ai_agent_project

# Create folder structure
mkdir -p {data,models,utils,templates}

# Create main files
touch app.py agent.py config.py requirements.txt .env .gitignore

# Project structure:
# ai_agent_project/
# ├── app.py           # Streamlit web interface
# ├── agent.py         # AI agent logic
# ├── config.py        # Configuration settings
# ├── requirements.txt # Python dependencies
# ├── .env            # API keys (never commit!)
# ├── .gitignore      # Git ignore file
# ├── data/           # Knowledge base documents
# ├── models/         # Saved model files
# ├── utils/          # Helper functions
# └── templates/      # Response templates

Part 3: Building the AI Agent

Step 1: Core Agent Implementation

Create agent.py with our agent logic:

# agent.py
import os
from typing import List, Dict, Any
from dotenv import load_dotenv
from langchain.llms import OpenAI
from langchain.chat_models import ChatOpenAI
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
from langchain.agents import Tool, AgentExecutor, LLMSingleActionAgent
from langchain.prompts import StringPromptTemplate
from langchain.schema import AgentAction, AgentFinish
import re

# Load environment variables
load_dotenv()

class CustomerSupportAgent:
    """AI Agent for customer support with memory and tool usage"""
    
    def __init__(self, use_ollama=False):
        """Initialise the agent with specified LLM"""
        self.use_ollama = use_ollama
        self.setup_llm()
        self.setup_memory()
        self.setup_tools()
        self.setup_knowledge_base()
        
    def setup_llm(self):
        """Configure the language model"""
        if self.use_ollama:
            from langchain.llms import Ollama
            self.llm = Ollama(model="llama2")
            self.embeddings = None  # Use default embeddings
        else:
            api_key = os.getenv("OPENAI_API_KEY")
            if not api_key:
                raise ValueError("OpenAI API key not found in .env file")
            
            self.llm = ChatOpenAI(
                temperature=0.7,
                model_name="gpt-3.5-turbo",
                openai_api_key=api_key
            )
            self.embeddings = OpenAIEmbeddings(openai_api_key=api_key)
    
    def setup_memory(self):
        """Initialise conversation memory"""
        self.memory = ConversationBufferMemory(
            memory_key="chat_history",
            return_messages=True,
            output_key="answer"
        )
    
    def setup_tools(self):
        """Define tools the agent can use"""
        self.tools = [
            Tool(
                name="Search Knowledge Base",
                func=self.search_knowledge_base,
                description="Search internal documentation for answers"
            ),
            Tool(
                name="Escalate to Human",
                func=self.escalate_to_human,
                description="Escalate complex issues to human support"
            ),
            Tool(
                name="Check Order Status",
                func=self.check_order_status,
                description="Check the status of a customer order"
            ),
            Tool(
                name="Process Refund",
                func=self.process_refund,
                description="Initiate a refund process"
            )
        ]
    
    def setup_knowledge_base(self):
        """Load and index documentation"""
        # Create vector store for semantic search
        self.vectorstore = Chroma(
            persist_directory="./data/vectorstore",
            embedding_function=self.embeddings
        )
        
    def search_knowledge_base(self, query: str) -> str:
        """Search documentation for relevant information"""
        try:
            docs = self.vectorstore.similarity_search(query, k=3)
            if docs:
                return "\n".join([doc.page_content for doc in docs])
            return "No relevant information found in knowledge base."
        except:
            return "Knowledge base search is currently unavailable."
    
    def escalate_to_human(self, issue: str) -> str:
        """Escalate to human support"""
        # In production, this would create a ticket
        return f"I've escalated your issue to our human support team. Ticket #SUP-{hash(issue) % 10000:04d} created. They'll contact you within 24 hours."
    
    def check_order_status(self, order_id: str) -> str:
        """Mock order status check"""
        # In production, this would query your order database
        statuses = ["Processing", "Shipped", "Delivered", "In Transit"]
        import random
        status = random.choice(statuses)
        return f"Order {order_id} status: {status}"
    
    def process_refund(self, order_id: str) -> str:
        """Mock refund processing"""
        # In production, this would integrate with payment system
        return f"Refund initiated for order {order_id}. Processing time: 3-5 business days."
    
    def respond(self, user_input: str) -> str:
        """Generate response to user input"""
        # System prompt defining agent behaviour
        system_prompt = """You are a helpful customer support AI agent.
        Your goal is to assist customers with their queries professionally and efficiently.
        
        Guidelines:
        1. Be polite, empathetic, and professional
        2. Use available tools when appropriate
        3. Ask clarifying questions if needed
        4. Admit when you don't know something
        5. Never make up information
        
        Available tools:
        - Search Knowledge Base: For product/service information
        - Check Order Status: For order inquiries (need order ID)
        - Process Refund: For refund requests (need order ID)
        - Escalate to Human: For complex issues you can't resolve
        
        Current conversation:
        {chat_history}
        
        Human: {human_input}
        Assistant: Let me help you with that."""
        
        # Create prompt template
        from langchain.prompts import ChatPromptTemplate
        prompt = ChatPromptTemplate.from_template(system_prompt)
        
        # Create conversation chain
        chain = ConversationalRetrievalChain.from_llm(
            llm=self.llm,
            retriever=self.vectorstore.as_retriever() if self.vectorstore else None,
            memory=self.memory,
            verbose=True
        )
        
        # Get response
        response = chain({"question": user_input})
        return response["answer"]

# Example usage
if __name__ == "__main__":
    # Create agent
    agent = CustomerSupportAgent(use_ollama=False)
    
    # Test conversation
    print("Agent: Hello! I'm your AI support assistant. How can I help you today?")
    
    while True:
        user_input = input("\nYou: ")
        if user_input.lower() in ['exit', 'quit', 'bye']:
            print("Agent: Thank you for contacting us. Have a great day!")
            break
        
        response = agent.respond(user_input)
        print(f"\nAgent: {response}")

What this does: Creates an agent that can understand context, remember conversations, search documentation, and perform actions like checking orders or escalating issues.

Step 2: Build Web Interface

Create app.py for the Streamlit interface:

# app.py
import streamlit as st
from agent import CustomerSupportAgent
import time

# Page configuration
st.set_page_config(
    page_title="AI Support Agent",
    page_icon="🤖",
    layout="wide"
)

# Custom CSS
st.markdown("""

""", unsafe_allow_html=True)

# Initialise session state
if "messages" not in st.session_state:
    st.session_state.messages = []
    st.session_state.agent = CustomerSupportAgent(use_ollama=False)

# Header
st.title("🤖 AI Customer Support Agent")
st.markdown("---")

# Sidebar with information
with st.sidebar:
    st.header("About This Agent")
    st.info("""
    This AI agent can:
    - Answer product questions
    - Check order status
    - Process refunds
    - Escalate to human support
    
    Just type your question below!
    """)
    
    st.header("Example Queries")
    st.code("What's your return policy?")
    st.code("Check order #12345")
    st.code("I want a refund")
    st.code("Connect me to a human")
    
    # Settings
    st.header("Settings")
    use_ollama = st.checkbox("Use Local LLM (Ollama)", value=False)
    if use_ollama:
        st.warning("Make sure Ollama is running locally")

# Chat interface
chat_container = st.container()

# Display chat history
with chat_container:
    for message in st.session_state.messages:
        with st.chat_message(message["role"]):
            st.write(message["content"])

# Input field
user_input = st.chat_input("Type your message here...")

if user_input:
    # Add user message to history
    st.session_state.messages.append({"role": "user", "content": user_input})
    
    # Display user message
    with st.chat_message("user"):
        st.write(user_input)
    
    # Get agent response
    with st.chat_message("assistant"):
        message_placeholder = st.empty()
        
        # Show thinking animation
        with st.spinner("Thinking..."):
            response = st.session_state.agent.respond(user_input)
        
        # Display response with typing effect
        displayed_response = ""
        for char in response:
            displayed_response += char
            message_placeholder.markdown(displayed_response + "▌")
            time.sleep(0.01)
        
        message_placeholder.markdown(response)
    
    # Add agent response to history
    st.session_state.messages.append({"role": "assistant", "content": response})

# Footer
st.markdown("---")
st.caption("Built with LangChain and Streamlit | [View Tutorial](https://example.com)")

# Run with: streamlit run app.py

Step 3: Add Knowledge Base

Create a script to load your documentation:

# load_knowledge.py
from langchain.document_loaders import TextLoader, PDFLoader, DirectoryLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Chroma
import os
from dotenv import load_dotenv

load_dotenv()

def load_documents(directory="./data/docs"):
    """Load all documents from directory"""
    # Load different file types
    loaders = [
        DirectoryLoader(directory, glob="**/*.txt", loader_cls=TextLoader),
        DirectoryLoader(directory, glob="**/*.pdf", loader_cls=PDFLoader),
    ]
    
    documents = []
    for loader in loaders:
        try:
            documents.extend(loader.load())
        except:
            pass
    
    return documents

def create_vectorstore(documents):
    """Create searchable vector store from documents"""
    # Split documents into chunks
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=1000,
        chunk_overlap=200
    )
    chunks = text_splitter.split_documents(documents)
    
    # Create embeddings and vector store
    embeddings = OpenAIEmbeddings()
    vectorstore = Chroma.from_documents(
        documents=chunks,
        embedding=embeddings,
        persist_directory="./data/vectorstore"
    )
    
    vectorstore.persist()
    print(f"Created vector store with {len(chunks)} chunks")
    return vectorstore

# Example knowledge base content
sample_docs = """
RETURN POLICY
We offer a 30-day return policy for all products. Items must be unused and in original packaging.
To initiate a return, contact our support team with your order number.

SHIPPING INFORMATION
Standard shipping: 5-7 business days
Express shipping: 2-3 business days
International shipping: 10-15 business days

PRODUCT WARRANTY
All products come with a 1-year manufacturer warranty.
Extended warranty available for purchase within 30 days of delivery.

PAYMENT METHODS
We accept Visa, MasterCard, American Express, PayPal, and Apple Pay.
Payment is processed securely through our encrypted payment gateway.
"""

# Save sample documentation
os.makedirs("./data/docs", exist_ok=True)
with open("./data/docs/policies.txt", "w") as f:
    f.write(sample_docs)

# Load and index documents
if __name__ == "__main__":
    print("Loading documents...")
    docs = load_documents()
    
    print("Creating vector store...")
    vectorstore = create_vectorstore(docs)
    
    print("Knowledge base ready!")

Pro Tip: Add your own documentation as .txt or .pdf files in the data/docs folder. The agent will automatically search them when answering questions.

Part 4: Advanced Features

Adding Custom Tools

Extend your agent with custom capabilities:

# custom_tools.py
from langchain.tools import Tool
import requests
import json

def weather_tool(location: str) -> str:
    """Get current weather for a location"""
    # Using free weather API
    api_url = f"https://wttr.in/{location}?format=j1"
    try:
        response = requests.get(api_url)
        data = response.json()
        current = data['current_condition'][0]
        return f"Weather in {location}: {current['weatherDesc'][0]['value']}, {current['temp_C']}°C"
    except:
        return f"Could not fetch weather for {location}"

def calculate_shipping(weight: float, distance: float) -> str:
    """Calculate shipping cost"""
    base_rate = 5.00
    weight_rate = 0.50 * weight
    distance_rate = 0.10 * distance
    total = base_rate + weight_rate + distance_rate
    return f"Estimated shipping cost: ${total:.2f}"

def sentiment_analysis(text: str) -> str:
    """Analyse customer sentiment"""
    # Simple sentiment analysis (use TextBlob or similar in production)
    positive_words = ['happy', 'great', 'excellent', 'good', 'amazing']
    negative_words = ['bad', 'terrible', 'awful', 'poor', 'disappointed']
    
    text_lower = text.lower()
    positive_count = sum(1 for word in positive_words if word in text_lower)
    negative_count = sum(1 for word in negative_words if word in text_lower)
    
    if positive_count > negative_count:
        return "Positive sentiment detected - customer seems satisfied"
    elif negative_count > positive_count:
        return "Negative sentiment detected - customer may need extra attention"
    else:
        return "Neutral sentiment detected"

# Create tool objects
custom_tools = [
    Tool(
        name="Weather",
        func=weather_tool,
        description="Get current weather for any location"
    ),
    Tool(
        name="Shipping Calculator",
        func=calculate_shipping,
        description="Calculate shipping costs based on weight and distance"
    ),
    Tool(
        name="Sentiment Analysis",
        func=sentiment_analysis,
        description="Analyse customer sentiment from their message"
    )
]

# Add to agent
# In agent.py, update setup_tools():
def setup_tools(self):
    self.tools.extend(custom_tools)

Analytics Dashboard

# analytics.py
import pandas as pd
import plotly.express as px
import streamlit as st
from datetime import datetime, timedelta

class ConversationAnalytics:
    """Track and analyse agent performance"""
    
    def __init__(self):
        self.conversations = []
        self.metrics = {
            'total_conversations': 0,
            'avg_response_time': 0,
            'escalation_rate': 0,
            'satisfaction_score': 0,
            'common_topics': {},
            'tool_usage': {}
        }
    
    def log_conversation(self, user_input, agent_response, response_time, tools_used):
        """Log conversation for analysis"""
        self.conversations.append({
            'timestamp': datetime.now(),
            'user_input': user_input,
            'agent_response': agent_response,
            'response_time': response_time,
            'tools_used': tools_used,
            'word_count': len(agent_response.split())
        })
        self.update_metrics()
    
    def update_metrics(self):
        """Calculate performance metrics"""
        if not self.conversations:
            return
        
        df = pd.DataFrame(self.conversations)
        
        self.metrics['total_conversations'] = len(df)
        self.metrics['avg_response_time'] = df['response_time'].mean()
        
        # Calculate escalation rate
        escalations = df['agent_response'].str.contains('escalate|human|support team', case=False).sum()
        self.metrics['escalation_rate'] = (escalations / len(df)) * 100
        
        # Tool usage statistics
        all_tools = []
        for tools in df['tools_used']:
            if tools:
                all_tools.extend(tools)
        
        from collections import Counter
        self.metrics['tool_usage'] = dict(Counter(all_tools))
    
    def display_dashboard(self):
        """Display analytics in Streamlit"""
        st.header("📊 Agent Analytics Dashboard")
        
        col1, col2, col3, col4 = st.columns(4)
        
        with col1:
            st.metric("Total Conversations", self.metrics['total_conversations'])
        
        with col2:
            st.metric("Avg Response Time", f"{self.metrics['avg_response_time']:.2f}s")
        
        with col3:
            st.metric("Escalation Rate", f"{self.metrics['escalation_rate']:.1f}%")
        
        with col4:
            st.metric("Satisfaction Score", "4.5/5.0")  # Mock score
        
        # Tool usage chart
        if self.metrics['tool_usage']:
            fig = px.bar(
                x=list(self.metrics['tool_usage'].keys()),
                y=list(self.metrics['tool_usage'].values()),
                title="Tool Usage Frequency"
            )
            st.plotly_chart(fig)
        
        # Response time trend
        if len(self.conversations) > 1:
            df = pd.DataFrame(self.conversations)
            fig = px.line(df, x='timestamp', y='response_time', title="Response Time Trend")
            st.plotly_chart(fig)

Continuous Learning

# learning.py
import json
from datetime import datetime

class ContinuousLearning:
    """Enable agent to learn from interactions"""
    
    def __init__(self, feedback_file="feedback.json"):
        self.feedback_file = feedback_file
        self.load_feedback()
    
    def load_feedback(self):
        """Load existing feedback data"""
        try:
            with open(self.feedback_file, 'r') as f:
                self.feedback_data = json.load(f)
        except:
            self.feedback_data = {
                'successful_responses': [],
                'failed_responses': [],
                'corrections': {}
            }
    
    def record_feedback(self, query, response, success=True, correction=None):
        """Record user feedback on responses"""
        feedback_entry = {
            'timestamp': datetime.now().isoformat(),
            'query': query,
            'response': response,
            'success': success
        }
        
        if success:
            self.feedback_data['successful_responses'].append(feedback_entry)
        else:
            self.feedback_data['failed_responses'].append(feedback_entry)
            if correction:
                self.feedback_data['corrections'][query] = correction
        
        self.save_feedback()
    
    def save_feedback(self):
        """Save feedback to file"""
        with open(self.feedback_file, 'w') as f:
            json.dump(self.feedback_data, f, indent=2)
    
    def get_correction(self, query):
        """Check if we have a correction for this query"""
        # Simple similarity check - use embeddings in production
        for saved_query, correction in self.feedback_data['corrections'].items():
            if query.lower() in saved_query.lower() or saved_query.lower() in query.lower():
                return correction
        return None
    
    def generate_training_data(self):
        """Generate fine-tuning data from feedback"""
        training_data = []
        
        # Convert successful interactions to training examples
        for entry in self.feedback_data['successful_responses']:
            training_data.append({
                "prompt": entry['query'],
                "completion": entry['response']
            })
        
        # Add corrections as training examples
        for query, correction in self.feedback_data['corrections'].items():
            training_data.append({
                "prompt": query,
                "completion": correction
            })
        
        # Save as JSONL for fine-tuning
        with open('training_data.jsonl', 'w') as f:
            for item in training_data:
                f.write(json.dumps(item) + '\n')
        
        return training_data

# Integration with main agent
def enhance_response(self, user_input):
    """Check for corrections before generating response"""
    learner = ContinuousLearning()
    
    # Check if we have a correction for this query
    correction = learner.get_correction(user_input)
    if correction:
        return correction
    
    # Generate normal response
    response = self.respond(user_input)
    
    # Add feedback buttons in UI
    return response

Part 5: Deployment Options

Local Deployment

Best for testing and internal use

# Run locally
streamlit run app.py

# Access at http://localhost:8501
  • ✓ Free
  • ✓ Full control
  • ✗ Not accessible externally

Streamlit Cloud

Free hosting for Streamlit apps

  1. 1. Push to GitHub
  2. 2. Connect to Streamlit Cloud
  3. 3. Add API keys in settings
  4. 4. Deploy automatically
  • ✓ Free tier available
  • ✓ Auto-deployment
  • ✓ HTTPS included

Docker Container

For production deployment

# Dockerfile
FROM python:3.9-slim
WORKDIR /app
COPY . .
RUN pip install -r requirements.txt
CMD ["streamlit", "run", "app.py"]
  • ✓ Scalable
  • ✓ Platform agnostic
  • ✓ Production ready

Quick Deployment Guide

Option 1: Deploy to Heroku (Free)

# Install Heroku CLI
# Create Procfile
echo "web: streamlit run app.py --server.port $PORT" > Procfile

# Create Heroku app
heroku create your-agent-name
heroku config:set OPENAI_API_KEY=your-key

# Deploy
git add .
git commit -m "Initial deployment"
git push heroku main

Option 2: Deploy to Railway (Simple)

# Install Railway CLI
npm install -g @railway/cli

# Deploy
railway login
railway init
railway up

# Add environment variables in Railway dashboard

Option 3: Deploy to AWS (Scalable)

# Using AWS Copilot
copilot app init ai-agent
copilot env init --name production
copilot svc init --name web
copilot svc deploy --name web --env production

Part 6: Testing & Optimisation

Testing Your Agent

# test_agent.py
import unittest
from agent import CustomerSupportAgent
import time

class TestAgent(unittest.TestCase):
    def setUp(self):
        """Set up test agent"""
        self.agent = CustomerSupportAgent(use_ollama=False)
    
    def test_basic_response(self):
        """Test basic query handling"""
        response = self.agent.respond("Hello")
        self.assertIsNotNone(response)
        self.assertIn("help", response.lower())
    
    def test_order_status(self):
        """Test order status checking"""
        response = self.agent.respond("Check order #12345")
        self.assertIn("order", response.lower())
        self.assertIn("12345", response)
    
    def test_knowledge_search(self):
        """Test knowledge base search"""
        response = self.agent.respond("What's your return policy?")
        self.assertIn("return", response.lower())
        self.assertIn("30", response)  # 30-day policy
    
    def test_escalation(self):
        """Test human escalation"""
        response = self.agent.respond("I need to speak to a human")
        self.assertIn("escalate", response.lower())
        self.assertIn("ticket", response.lower())
    
    def test_response_time(self):
        """Test response time is reasonable"""
        start = time.time()
        response = self.agent.respond("Simple question")
        elapsed = time.time() - start
        self.assertLess(elapsed, 5.0)  # Should respond within 5 seconds
    
    def test_memory(self):
        """Test conversation memory"""
        self.agent.respond("My name is John")
        response = self.agent.respond("What's my name?")
        self.assertIn("John", response)

if __name__ == "__main__":
    unittest.main()

Performance Optimisation

Speed Optimisations

  • • Cache frequent queries
  • • Use streaming responses
  • • Implement query batching
  • • Optimise vector search (FAISS)
  • • Use smaller models for simple tasks

Cost Optimisations

  • • Use GPT-3.5 instead of GPT-4
  • • Implement token limits
  • • Cache API responses
  • • Use local models when possible
  • • Batch similar queries
# Caching implementation
from functools import lru_cache
import hashlib

@lru_cache(maxsize=100)
def cached_response(query_hash):
    """Cache frequent queries"""
    return generate_response(query_hash)

def get_response(query):
    # Create hash of query for caching
    query_hash = hashlib.md5(query.encode()).hexdigest()
    
    # Check cache first
    if query_hash in cache:
        return cache[query_hash]
    
    # Generate new response
    response = agent.respond(query)
    cache[query_hash] = response
    return response

Next Steps & Advanced Topics

Enhancements to Try

  • ✓ Add voice input/output with Whisper API
  • ✓ Implement multi-language support
  • ✓ Add sentiment analysis for empathy
  • ✓ Create admin dashboard for monitoring
  • ✓ Implement A/B testing for responses
  • ✓ Add integration with CRM systems

Common Issues & Solutions

Rate Limiting: Use exponential backoff and implement request queuing
Memory Issues: Limit conversation history to last N messages
Slow Responses: Use streaming, implement caching, consider smaller models
High Costs: Monitor token usage, use GPT-3.5, implement spending limits
Hallucinations: Add fact-checking, use retrieval augmentation, set temperature lower

Congratulations! 🎉

You've built a fully functional AI agent from scratch! This agent can understand natural language, remember conversations, search documentation, and perform actions—all the fundamentals of modern AI applications.

What You've Learned

  • ✓ AI agent architecture
  • ✓ LangChain framework
  • ✓ Vector databases
  • ✓ Prompt engineering
  • ✓ Tool integration
  • ✓ Memory management
  • ✓ Web interface design
  • ✓ Deployment strategies
  • ✓ Testing methodologies
  • ✓ Performance optimisation

Your Challenge

Customise this agent for your specific use case. Change the prompts, add new tools, integrate with your systems. The foundation is solid—now make it yours!

"The best way to learn AI is to build with it. You've taken the first step—keep building, keep learning, and keep pushing the boundaries of what's possible."

Download Resources

Code Repository

Complete code with all examples and extras

View on GitHub

Quick Start Template

Ready-to-deploy template with best practices

Download Template

About Intelligent Solutions Agency

We specialise in making AI accessible to Australian businesses. This tutorial represents our commitment to education and empowerment—showing that anyone can harness the power of AI with the right guidance.

Need help scaling this to production or building custom agents for your business? We're here to help turn your AI vision into reality.

Continue Learning